Sphingolipid signaling reduces basal P-glycoprotein activity in renal proximal tubule.

نویسنده

  • David S Miller
چکیده

P-glycoprotein is an ATP-driven xenobiotic export pump that is highly expressed in barrier and excretory tissues, where it greatly influences drug pharmacokinetics. Recent studies in the blood-brain and spinal cord barriers identified a sphingolipid-based signaling pathway that regulates basal activity of P-glycoprotein. Here we use an established comparative renal model that permits direct measurement of P-glycoprotein activity to determine whether such signaling occurs in another tissue, killifish renal proximal tubule. Isolated killifish tubules exposed to 0.01-1.0 μM sphingosine-1-phosphate (S1P) exhibited a profound decrease in P-glycoprotein transport activity, measured as specific accumulation of a fluorescent cyclosporine A derivative in the tubule lumen. Loss of activity had a rapid onset and was fully reversible when the S1P was removed. Transport mediated by multidrug resistance-associated protein 2 (Mrp2) or a teleost fish organic anion transporter (Oat) was not affected. S1P effects were blocked by a specific S1P receptor 1 (S1PR1) antagonist and mimicked by a S1PR agonist. Sphingosine also reduced P-glycoprotein transport activity and those effects were blocked by an inhibitor of sphingosine kinase and by the S1PR1 antagonist. These results for a comparative renal model suggest that sphingolipid signaling to P-glycoprotein is not just restricted to the blood-brain and blood-spinal cord barriers, but occurs in other excretory and barrier tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoflurane mediates protection from renal ischemia-reperfusion injury via sphingosine kinase and sphingosine-1-phosphate-dependent pathways.

The inhalational anesthetic isoflurane has been shown to protect against renal ischemia-reperfusion (IR) injury. Previous studies demonstrated that isoflurane modulates sphingolipid metabolism in renal proximal tubule cells. We sought to determine whether isoflurane stimulates sphingosine kinase (SK) activity and synthesis of sphingosine-1-phosphate (S1P) in renal proximal tubule cells to media...

متن کامل

Regulation of P-Glycoprotein in Renal Proximal Tubule Epithelial Cells by LPS and TNF-α

During endotoxemia, the ATP-dependent drug efflux pump P-glycoprotein (Abcb1/P-gp) is upregulated in kidney proximal tubule epithelial cells. The signaling pathway through which lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) regulates P-gp expression and activity was investigated further in the present study. Exposure of rat kidney proximal tubule cells to TNF-alpha alone o...

متن کامل

Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain.

P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to the delivery of small-molecule drugs across the blood-brain barrier and into the CNS. Here we test a unique signaling-based strategy to overcome this obstacle. We used a confocal microscopy-based assay with isolated rat brain capillaries to map a signaling pathway that within minutes abolishes P-glycoprotein transport activi...

متن کامل

Protein kinase C regulation of p-glycoprotein-mediated xenobiotic secretion in renal proximal tubule.

Fluorescence microscopy, fluorescent substrates [daunomycin and a fluorescent cyclosporin A (CSA) derivative] and digital image analysis were used to examine the role of protein kinase C (PKC) in the control of p-glycoprotein in killifish renal proximal tubules. PKC activators, phorbol ester (phorbol 12-myristate 13-acetate, PMA) and dioctylglycerol, reduced luminal drug accumulation, and prote...

متن کامل

P-glycoprotein-mediated drug secretion in mouse proximal tubule perfused in vitro.

To examine the functional significance of drug-transporting P-glycoprotein (P-gp), studies were conducted in the isolated and perfused proximal tubule S2 segment from mice disrupting both mdr1a and mdr1b genes [mdr1a/1b(-)(-)] and their wild-type mice. Efflux of the intracellular fluorescence of rhodamine 123, a fluorescence substrate of P-gp, into the lumen was measured, and the decay half-tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 348 3  شماره 

صفحات  -

تاریخ انتشار 2014